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Introduction 

Purpose of this talk is to describe a new 

NASA Software Cost Model that is under 

development 

 It is built around a spectral clustering 

algorithm that can be used to estimate 

software size and effort that is effective for 

 small sample sizes 

noisy data 

and uses high level systems information  
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Background 

 The NASA Software CER Development Task is funded by 

the Cost Analysis Division to develop a software cost 

model that  

 Can be used in the early lifecycle  

 Can be used effectively by non-software specialists 

 Uses data from NASA in-house built and funded software 

“projects”  

 CADRe but also other Center level data sources 

 Supplement to current modeling and bottom up methods not a 

replacement 

 Can be documented as a paper model  

 Acceptable for use with both the cost and software communities 

 Year 1 building a prototype model for robotic flight 

software 
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Data Sources 

 Where the data came from 
 CADRe (When it exists and is usable) 

 NASA 93 - Historical NASA data originally collected for ISS 
(1985-1990) and extended for NASA IV&V (2004-2007)  

 Contributed Center level data 

 NASA software inventory  

 Project websites and other sources for system level 

information if not available in CADRe 
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Data Items 

 Total development effort in work months 

 Delivered and equivalent logical lines 

 COCOMO model inputs 
 Translated from CADRE which has SEER model inputs 

 System parameters 
 Mission Type (deep-space, earth-moon, rover-lander, 

observatory) 

 Multiple element (probe, etc.) 

 Number of instruments (Simple, Medium&Complex) 

 Number of deployables (Simple, Medium&Complex) 

 Flight Computer Redundancy  

 Heritage  
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System Descriptor Details (Example) 
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System	Descriptors

Mission	Type Values Description Example

Earth/Lunar	Orbiter

Robotic	spacecraft	that	orbit	the	earth	or	moon	conducting	science	

measurments.		These	spacecraft	are	very	similar	if	not	identical	to	the	many	

commercial	satellites	used	for	communication	as	well	as	many	military	

satelites.		They	often	can	have	have	high	heritage	and	even	use	production	

line	buses	from	industry.	

Aqua

Telecomm	Sat
Earth	orbiters	that	support	very	high	bandwidth	and	designed	for	very	long	

life.		
TDRS

Observatory

Observatories	are	space	based	telescopes	that	support	space	based	

astronomy	across	a	wide	set	of	frequencies.		They	can	be	earth	orbiters	or	

earth	trailing	at	the	various	lagrange	points	created	by	the	garvoty	fields	of	

the	earth,	sun	and	moon.	

Hubble

Deep	Space

Any	robotic	sapcecarft	that	goes	beyind	the	moons	orbit.		So	this	category	

includes	any	misison	whose	destination	is	a	planet,		planetoids,	any	planetary	

satelite,			comet,	asteroid	or		the	sun.	These	misison	can	be	orbiters	or	flybys	

or	a	mixture	of	both.

Deep	Impact

Static	Lander
A	robotic	spacecraft	that	does	its	science	in-situ	or	from	the	surface	of	a	

soplar	system	body.		It	does	not	move	from	its	original	location.	
Phoenix

Rover

A	robotic	spacecraft	that	does	its	science	in-situ	or	from	the	surface	of	a	solar	

system	body	and	has	the	ability	to	move	on	the	surface.		To	date	all	rovers	
have		wheels	but	in	the	future	they	may	crawl,	walk	or	hop.		

Mars	Exploration	Rover	(MER)

 Complete list is in the backup slides 



Data Yield 

 39 records with system descriptors mostly from GSFC and JPL 

 19 records have all data items 

 31 records have delivered LOC 

 21 records have effort 
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COCOMO Inputs Effort LOC Mission Descriptors 

Dense 

Sparse 
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Why explore alternative modeling methods?  

 For most of our history the cost community has 
relied upon regression type modeling methods 
 Regression method have the underlying assumption of  

clean and complete data with large sample 

sizes 

 Cost data suffers from sparseness,  noise, and small 
sample sizes 

 There are alternative methods that handle these 
conditions better then regression 



Anscombe’s Quartet 
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Models especially regression models  

built on small samples with noisy data 

can be very misleading 



Anscombe’s Quartet  

Reference: Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician 27 (1): 17–21. 

JSTOR 2682899.  Can also be found at http://en.wikipedia.org/wiki/Anscombe%27s_quartet 

 All four of the 

displayed plots have 

virtually identical 

statistics  

 Means, Medians, 

Variances 

 Regression line, 

R2, F and T tests 

 But visual inspection 

clearly shows they are 

very different 

 

 

http://en.wikipedia.org/wiki/Frank_Anscombe
http://en.wikipedia.org/wiki/American_Statistician
http://en.wikipedia.org/wiki/JSTOR
http://www.jstor.org/stable/2682899


Anscombe’s Quartet – Using MRE 

 Plotting the absolute values of the relative error  it is easily seen that Model 3 fits its 

data best just as intuition would indicate  

 MRE =  Magnitude of Relative Error, abs(Predicted – Actual)/Actual 

 

 

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0	 2	 4	 6	 8	 10	 12	

Model	1	

Model	2	

Model	3	

Model	4	

Model 3 fits its 

data the best 

 MRE can distinguish between the models 
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Evolution of Methods  

1960s 1970s 1980s 1990s 2000s Today 
Is it 

possible to 

model cost? 

What 

parameters & 

functional 

form? 

Cost and Schedule 

JCL 

Probabilistic Estimation 

Analogy/Clustering 

Bayesian 

Validated Robust Models 

Certification, Handbooks, Text Books 

How do we deal with sparse 

and noisy data? 

Can we do 

cost and 

schedule? 

PERT, LSR 

Parametric Models 

How deal with 

uncertainty? 

Multivariate  

Regression 

Draw line 

between 2 points 
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Data Mining Methods 

 Data mining techniques provided us with the rigorous tool set 
we needed to explore the many dimension of the problem we 
were addressing in a repeatable manner  

Analyze standard and non-standard models 
 Is there a best functional form 

Perform exhaustive searches over all parameters and 
records in order to guide data pruning   
Rows (Stratification) 

Columns (variable reduction) 

Measure model performance by multiple measures 
 R2, MRE, Pred, F-test, etc. 

 Is there a ‘best’ way to tune or calibrate a model 

 



2cee 14 

Effort Estimation with Data Mining Methods 
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Spectral Clustering 

PCA finds eigenvectors in numerical data 

 Spectral Clustering 

Spectral Clustering is like PCA on steroids but 

uses an eigenvector approximation method 

Recursively splits the data on synthesized 

dimension of greatest variance/spread 

Why use it 

Can handle numerical and symbolic data 

Can work on small, sparse and somewhat noisy 

data sets but also works well on large consistent 

data sets 

Can use as estimator with partial information 
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Mission 

Descriptors 
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Side Note - Methodology Results 

Pure clustering 

Median measures always win 

Has implications for our commonly used regression 

based models which are regression to the mean 

 Interpolation beats centroid  

Produces lower over all MRE 

Median distance between two clusters is best 

Produces lower over all MRE 
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SLOC Estimation 
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Half the time, estimates within 40% of actual, using early life cycle data 

 Results so far are promising  
 Remember that software size growth of 50-100%+  

is not uncommon 

3 major 

outliers 

need to 

look into 
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 Clustering using just high 

level system 

descriptors/variables 

estimates almost as good as 

running the COCOMO model 

or a simple regression 

 LSR - Effort/EM = aSb 

 Results biased 
 

 There is no inherent reason 

to assume with similar 

inputs that other models 

would perform any better 

 

 

Clustering on Systems Parameters does almost 

as well as COCOMO or a Regression! 

67-73% of estimates within +/-50% of actual, using early life cycle data 
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21 

NASA SW Cluster Estimation Prototype 

Example Clusters 

COCOMO EM System Descriptors 
Enter Data Rovers 

Deep Space Earth/Moon 



Conclusions and Next steps 
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 Initial results very promising: 

 Reasonably accurate LOC estimators for early lifecycle data 

 Effort estimators for early lifecycle data  

 Barry Boehm at the  USC Center for Systems and 

Software Engineering is working with us and applying 

these methods on the COCOMO II data set 

 Next Steps under consideration 

 Expand and improve SC flight software data set and add 

Instrument flight software 

 Test with SEER-SEM 

 Further explore combinations of data sets and methods for 

constructing clusters  

 Engage NASA software and cost community on how to pilot and 

improve the models 

 

 



Back Up Slides 
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System Descriptors -1 

System	Descriptors

Mission	Type Values Description Example

Earth/Lunar	Orbiter

Robotic	spacecraft	that	orbit	the	earth	or	moon	conducting	science	

measurments.		These	spacecraft	are	very	similar	if	not	identical	to	the	many	

commercial	satellites	used	for	communication	as	well	as	many	military	

satelites.		They	often	can	have	have	high	heritage	and	even	use	production	
line	buses	from	industry.	

Aqua

Telecomm	Sat
Earth	orbiters	that	support	very	high	bandwidth	and	designed	for	very	long	

life.		
TDRS

Observatory

Observatories	are	space	based	telescopes	that	support	space	based	
astronomy	across	a	wide	set	of	frequencies.		They	can	be	earth	orbiters	or	

earth	trailing	at	the	various	lagrange	points	created	by	the	garvoty	fields	of	

the	earth,	sun	and	moon.	

Hubble

Deep	Space

Any	robotic	sapcecarft	that	goes	beyind	the	moons	orbit.		So	this	category	

includes	any	misison	whose	destination	is	a	planet,		planetoids,	any	planetary	

satelite,			comet,	asteroid	or		the	sun.	These	misison	can	be	orbiters	or	flybys	

or	a	mixture	of	both.

Deep	Impact

Static	Lander
A	robotic	spacecraft	that	does	its	science	in-situ	or	from	the	surface	of	a	

soplar	system	body.		It	does	not	move	from	its	original	location.	
Phoenix

Rover

A	robotic	spacecraft	that	does	its	science	in-situ	or	from	the	surface	of	a	solar	

system	body	and	has	the	ability	to	move	on	the	surface.		To	date	all	rovers	

have		wheels	but	in	the	future	they	may	crawl,	walk	or	hop.		

Mars	Exploration	Rover	(MER)

Secondary	Element Values Description Example
None No	secondary	element Mars	Reconsance	Obiter	(MRO)

Probe	or	Impactor

A	simple	impactor	with	little	or	no	guidance	and	navigation	capabilityand	

once	released				it	simply	transmits	data	from	its	instruments			A	moderate-

complexity	impactor	which	may	receive	commands	after	separation,	may	

have	some	internal	guidance	control,	and	several	moderately	complex	
instruments.

Cassini-Huygens	was	a	simple	

probe.		Deep	Impact	had	a	

medium	complexity	probe.

Entry	Descent	and	Landing		vehicle
EDL	can	be	simple	with	a	ballastic	trajectory	or	complex	with	precision	
landing	and	hazard	avoidance.		All	landers	and	Rovers	will	have	an	EDL	

element.

Mars	Pathfinder		is	an	example	of	
a	simple	EDL.		MSL	is	an	example	

of	a	complex	EDL

Sample	return
A	simple	sample	return	is	a	like	a	simple	probe	but	returning	to	earth.		A	
complex	sample	reurn	would	be	a	return	from	a	planet	surface	and	requires	
an	ascent	stage.

Stardust	is	an	example	of	a	
simple	sample	return
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System Descriptors -2 

Over	All	Complexity Values Description Example

Simple,	Medium,	or	Complex
These	are	basd	on	the	mission	type	and	secondary	element	so	are	derived	

from	the	descriptions	above
N/A

Number	of	Instruments Values Description Example

Simple	
Any science instrument for which the FSW need only pass through commands 

and receive and store telemetry.
Magneometer

Medium

Any science instrument for which the FSW must provide control logic that is 

relatively simple and requires no or only loose real time control. E.g., MER 

instruments.

MER	Instruments

Complex
Any science instrument for which the FSW must provide control logic that is 

complicated or requires tight real-time control. 
Telescope

Flight	Computer	Redundancy Values Description Example

Single	String Spacecraft has no redundancy in the flight computer Most	Earth	Orbiters

Dual	String	-	Cold	backup
Spacecraft has redundant flight computers. Backup is normally off, is powered 

up and boots when prime string goes down
Most	Deep	space	missions

Dual	String	-	Warm	backup

Backup computer is powered on and monitoring state of prime computer, but 

does not need to maintain continuous operation (e.g., a sequence may be 

restarted, attitude control restarts with last known state, etc.)

MSL	

Number	of	Deployables Values Description Example

Simple	
Simple deployable(s) which activate one time and remain in the deployed 

position for the duration of the mission.
Magnetometer	boom

Medium
Moderately complex deployables which require some sequencing of 

deployment events, or may require deployment and retraction.
Deployable	Solar	arrays

Complex

Complex deployables with detailed deployment sequences, many deployments 

and retractions which may require additional control algorithms to 

compensate for changing system characteristics, or deployables which are 

critical to mission safety and/or success.  

Parachute,	bag	inflation	and	

retraction,	rover	standup,	ramp	

extension,	complex	robotic	

arms).
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System Descriptors -3 

Number	of	Deployables Values Description Example

Simple	
Simple deployable(s) which activate one time and remain in the deployed 

position for the duration of the mission.
Magnetometer	boom

Medium
Moderately complex deployables which require some sequencing of 

deployment events, or may require deployment and retraction.
Deployable	Solar	arrays

Complex

Complex deployables with detailed deployment sequences, many deployments 

and retractions which may require additional control algorithms to 

compensate for changing system characteristics, or deployables which are 

critical to mission safety and/or success.  

Parachute,	bag	inflation	and	
retraction,	rover	standup,	ramp	
extension,	complex	robotic	
arms).

Inheritance Values Description Example

Low	to	None
Software to be inherited has never flown in space.  Significant new design and 

basically all new code.

Mar	Pathfinder	or	MSL	EDL	
software

Medium
Basic design has been used before but significant portion is new design and a 

code is newly written.
MSL

High
Software to be inherited has flown in space and performed satisfactorily. 

Inherited SW architecture but majority of  code is newly developed. 
Many	Planetary	orbiiters

Very	High
Software to be inherited was developed as a product line, has flown 

successfully in space at least once, has been successfully re-used in at least 

two missions, and has extensive documentation.

Many	earth	orbiters



Spectral Clustering 

 Select measure of 

distance 

 Pick point A at 

random (near 

middle works 

better) 

 Find furthest point 

from A (B) 

 Find Furthest point 

for B (C) 

 Draw line B-C 

 Project all points 

onto the line and 

find the median. 

This is first 

eigenvector. 

 Split data set by 

median point 

 Repeat on each 

subset 
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